

FOS: A FACTORED OPERATING SYSTEM FOR HIGH
ASSURANCE AND SCALABILITY ON MULTICORES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

AUGUST 2012

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2012-205

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2012-205 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
CHRISTOPHER FLYNN PAUL ANTONIK
Work Unit Manager Technical Advisor, Computing &
 Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUG 2012
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAR 2009 – MAR 2012
4. TITLE AND SUBTITLE
FOS: A FACTORED OPERATING SYSTEM FOR HIGH
ASSURANCE AND SCALABILITY ON MULTICORES

5a. CONTRACT NUMBER
FA8750-09-1-0152

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)
Anant Agarwal, Jason Miller, David Wentzlaff, Harshad Kasture,
Nathan Beckmann, Charles Gruenwald III, and
Christopher Johnson

5d. PROJECT NUMBER
459T

5e. TASK NUMBER
MI

5f. WORK UNIT NUMBER
TF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
77 Massachusetts Ave
Cambridge, MA 02139-4307

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-RI-RS-TR-2012-205
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
fos is a new operating system design for multicores and cloud computing. It builds on previous work in
distributed and microkernel OSes by factoring services out of the kernel, and then further distributing each
service into a parallel, distributed fleet of cooperating processes. This design naturally spans non-coherent
shared memory architectures and clusters of machines. Additionally it provides increased isolation between
and within services, giving opportunities for increased reliability. This report describes the general design
principles of fos as well as the implementation of several specific services with evaluation of their scalability
(e.g., naming, page allocation, and network stack). It also describes two distributed data structures (dPool and
key-value store) that we implement to ease implementation of fos system services.
15. SUBJECT TERMS
fos, factored operating system, distributed operating system, high assurance, multicore

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

27

19a. NAME OF RESPONSIBLE PERSON
CHRISTOPHER FLYNN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.1

 i

TABLE OF CONTENTS

List of Figures ... ii
1.0 Summary .. 1
2.0 Introduction .. 2
3.0 Methods, Assumptions, and Procedures (System Design) .. 4

3.1 Microkernel .. 4
3.2 Fleets .. 5

3.2.1 Scalability. .. 6
3.2.2 Self-awareness. ... 6
3.2.3 Elasticity. .. 7
3.2.4 Fault Tolerance. .. 7

4.0 Results and Discussion .. 8
4.1 Summary of Accomplishments .. 8
4.2 Messaging... 9
4.3 Programming Model .. 10
4.4 Cloud Computing ... 11
4.5 Xen Paravirtualization .. 11
4.6 Application Support ... 12
4.7 Services .. 13

4.7.1 Naming. ... 13
4.7.2 Page Allocation. .. 14
4.7.3 Network Stack. .. 16
4.7.4 File System and Block Device. ... 17
4.7.5 Process Management. ... 17
4.7.6 Cloud Management. .. 18

4.8 Distributed Data Structures .. 18
4.8.1 dPool. .. 18
4.8.2 Key-Value Store.. 19

4.9 Tilera Port ... 19
5.0 Conclusions .. 19
6.0 References .. 21
List of Symbols, Abbreviations and Acronyms .. 22

 ii

LIST OF FIGURES

Figure 1: Linux kernel memory allocation performance .. 3
Figure 2: fos high-level architecture ... 5
Figure 3: Single-stream memcached latency .. 12
Figure 4: Scaling of the Name Service Fleet .. 14
Figure 5: Scalability of Physical Memory Allocation Service ... 15
Figure 6: Comparison of Linux and fos page allocation... 15
Figure 7: fos Network Stack Design ... 16
Figure 8: Comparison of Linux and fos network scaling ... 17

Approved for Public Release; Distribution Unlimited.
 1

1.0 SUMMARY

The next decade will bring single microprocessors containing 100’s, 1000’s, or even tens
of 1000’s of computing cores. While these processors will offer unprecedented quantities of
computational resources, keeping all of those resources functioning properly will be a
tremendous challenge. Besides the current problems of buggy software, future processors will
experience increasing numbers of hard (permanent) and soft (transient) errors due to their
smaller CMOS devices and increasing levels of integration. Contemporary operating systems
have been designed to run on a small number of reliable cores and are not equipped to tolerate
frequent errors. Managing 10,000 unreliable cores is so fundamentally different from managing
two reliable cores that the fundamental design of operating systems and operating system data
structures must be rethought.

Factored Operating System (fos) is a concept for a new operating system targeting 1000+
core multicore systems where space sharing replaces traditional time sharing to increase
scalability and reliability. fos is built as a collection of Internet-inspired services. Each
operating system service is factored into a set of communicating servers that, in aggregate,
implement a system service. These servers, which are bound to dedicated cores, provide
traditional kernel services and manage traditional kernel data structures in a factored, spatially-
distributed manner. Running the servers on dedicated cores reduces the probability that they will
be corrupted by buggy application code. Also, because they are spatially distributed, they
provide a level of redundancy that allows the service to continue operating even if one or more
server cores suffer errors. This is in stark contrast to current operating systems whose monolithic
designs and shared central data structures create many opportunities for a single failure to cripple
the entire system.

The fos project aims to build the prototypical open-source operating system for the 1000-
core era. This includes a full suite of high-reliability system services that includes memory
allocation, process management, protection, networking, and file-system services. Implementing
a complete system for a simulated 1000-core microprocessor will allow us to verify the
scalability of a factored design as well as experiment with different design choices and
optimizations. When the implementation is sufficiently complete and stable, it will be released
to the open source community to form the basis for future OS research and development.

This report contains our efforts to construct the system, both the general design principles
of fos’s scalable service model and implementations of specific services. We describe the design
of naming, page allocation, network stack, file system, and process management services
including experimental evaluation of the naming, page allocation, and network stack. These
results indicate that fos compares well against Linux, even when accounting for cores devoted to
the OS. We discuss how fos’s fleet design gives opportunities for improved reliability in several
services and spanning the full system stack. We also describe two generalized distributed data
structures (dPool and key-value store) that we have implemented to ease the implementation fos
services.

Approved for Public Release; Distribution Unlimited.
 2

2.0 INTRODUCTION

The number of processing cores on single-chip microprocessors is increasing rapidly. The recent
shift from single-stream to multicore processor designs is motivated by an inability to maintain
exponential performance improvement in single-stream designs. Because this shift is out of
necessity rather than choice, it is likely to continue for the foreseeable future [1]. Extrapolating
current growth rates, a single microprocessor will contain between 1,000 and 10,000 cores within
the next 10 years [2].

Unfortunately, current operating systems are incapable of dealing with the realities of
future multicore systems. They were designed for single-processor computers and adapted to
handle systems with small numbers of cores. In contrast to previous hardware generations,
where additional resources were hidden behind abstraction layers and ISAs, multicore processors
expose new resources in the form of additional cores and require the software to decide how to
manage them. The task of managing 10,000 cores is so fundamentally different from the task of
managing two cores that the entire design of operating systems must be rethought.

One of the key problems in managing large-scale multicores is reliability. As CMOS
technology advances and devices become smaller they are more susceptible to manufacturing
defects and transient external interferences (e.g., cosmic rays) [3, 4]. This increases the
probability that a particular device will experience a failure. At the same time, the number of
these devices on each chip is increasing exponentially. Therefore, future chips will experience
many more permanent and transient errors than current processors. The good news is that
multicore designs naturally segment a chip’s resources so that a single error will probably only
affect one core. The bad news is that current operating systems rely on many centralized global
structures such that an error in even a single core can corrupt the entire system.

The problem with global data structures in multicore chips is that they do not scale well,
thereby creating single points of failure and performance bottlenecks [2]. To make effective use
of thousands of cores, future operating systems will need to address the issue of scalability.
Current symmetric multiprocessor (SMP) operating systems have been designed to manage a
small number of cores. With multicore chips, the number of cores will be increasing at an
exponential rate. Any OS designed to run on them will need to embrace scalability and make it a
first-order design constraint for reasons of both reliability and performance.

Contemporary operating systems for multiprocessor computers have evolved from
uniprocessor operating systems. As a result, they have several characteristics that prevent them
from scaling to 1000-core systems. Two of the biggest problems are centralized data structures
protected by locks and reliance on efficient hardware shared memory.

The initial approach to adapting uniprocessor operating systems to parallel machines was
to add a single large lock protecting the entire kernel. This prevents multiple threads from
simultaneously entering the kernel and therefore preserves the invariant that all kernel data
structures are accessed by one thread at a time. Unfortunately, a single kernel lock, by
definition, limits the concurrency achievable within an OS kernel and hence the scalability. The
traditional method of improving scalability has been to successively create finer-grained locks
thus reducing the probability that more than one thread is attempting to concurrently access
locked data. However, this approach suffers from two problems. First, adding locks into an
operating system is a very time consuming and error prone endeavor. These errors are frequently
subtle and go unnoticed during normal testing; only exposing themselves in unusual
circumstances. Second, each lock is manipulated by all the cores and is ultimately stored in a

Approved for Public Release; Distribution Unlimited.
 3

single location. A failure in either a core using the lock or the storage location can result in
either unsafe parallel execution or complete deadlock of the entire system.

Figure 1 demonstrates the reliance of current operating systems on centralized structures.
It shows the performance impact of centralized locks in the memory allocation routines of the
Linux kernel. This data was collected from the Linux 2.6.24.7 kernel, running on a 16-core Intel
machine, using a synthetic app designed to stress the memory allocation system. As the number
of cores attempting to allocate memory increases, the amount of time wasted on lock contention
dominates all other factors. It is clear that the existing kernel does not scale well beyond eight
cores, despite the fact that these routines have already been extensively optimized using fine-
grained locks. It is also clear that locks are heavily used, thereby creating many opportunities for
a lock-related failure to bring down the system.

Aside from the difficulties with locks, contemporary operating systems are hampered by

their reliance on shared memory for communication between cores. This is largely due to the
fact that shared memory is the only communication mechanism provided by current machines.
However, it is doubtful that future large-scale multicores will be able to provide efficient full-
machine cache coherence as the abstraction of a globally shared memory space is inherently a
shared global structure. Even if they could, a single failure in the “home” node for a memory
location could corrupt or disable communication between many other cores.

Figure 1: Linux kernel memory allocation performance

Number of Cores

C
yc

le
s

(in
 B

ill
io

ns
)

Lock
contention

Architectural
overhead

Useful
work

Approved for Public Release; Distribution Unlimited.
 4

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES (SYSTEM DESIGN)

Current OSes were designed in an era when computation was a limited resource. With the
expected exponential increase in number of cores, the landscape has fundamentally changed. The
question is no longer how to cope with limited resources, but rather how to make the most of the
abundant computation available. fos is designed with this in mind, and takes scalability and
adaptability as the first-order design constraints. The goal of fos is to design system services that
scale from a few to thousands of cores.

fos does this by factoring OS services into userspace processes, running on separate cores
from the application. Traditional monolithic OSs time multiplex the OS and application, whereas
fos spatially multiplexes OS services (running as user processes) and application processes. In a
regime of one to a few cores, time multiplexing is an obvious win because processor time is
precious and communication costs are low. With large multicores and the cloud, however,
processors are relatively abundant and communication costs begin to dominate. Running the OS
on every core introduces unnecessary sharing of OS data and associated communication
overheads; consolidating the OS to a few cores eliminates this. For applications that do not scale
well to all available cores, factoring the OS is advantageous in order to accelerate the
application. In this scenario, spatial scheduling (layout) becomes more important than time
multiplexing within a single core.

However, even when the application could consume all cores to good purpose, running
the OS on separate cores from the application provides a number of advantages. Cache pollution
from the OS is reduced, and OS data is kept hot in the cache of those cores running the service.
The OS and the application can run in parallel, pipelining OS and application processing, and
often eliminating expensive context switches. Running services as independent threads of
execution also enables extensive background optimizations and re-balancing. Although
background operations exist in monolithic OSes, fos facilitates such behavior since each service
has its own thread of control.

In order to meet demand in a large multicore or cloud environment, reduce access latency
to OS services and increase throughput, it is necessary to further parallelize each service into a
set of distributed, cooperating servers. We term such a service a fleet.

Figure 2 shows the high-level architecture of fos. A small microkernel runs on every
core. Operating system services and applications run on distinct cores. Applications can use
shared memory, but OS services communicate only via message passing. A library layer (libfos)
translates traditional syscalls into messages to fos services. A naming service is used to find a
message’s destination server. The naming service is maintained by a fleet of naming servers.
Finally, fos can run on top of a hypervisor and seamlessly span multiple machines, thereby
providing a single system image across a cloud computer.

3.1 Microkernel

In order to factor OS services into fleets, fos uses a minimal microkernel design. The
microkernel provides only: (i) a protected messaging layer, (ii) a name cache to accelerate
message delivery, (iii) rudimentary time multiplexing of cores, and (iv) an application
programming interface (API) to allow the modification of address spaces and thread creation. All
other OS functionality and applications execute in user space. However, many OS system
services possess special capabilities that grant them privileges beyond those of regular
applications.

Approved for Public Release; Distribution Unlimited.
 5

Capabilities are extensively used to restrict access into the protected microkernel. For
instance, the memory modification API allows a process on one core to modify the memory and
address space on another core if appropriate capabilities are held. This approach allows fos to
move significant memory management and scheduling logic into userland processes. Capabilities
are also used in the messaging system to determine who is allowed to send messages to whom.

3.2 Fleets

This section discusses how fos supports building fleets, and the principles used in building them.
The programming model used to construct fleets is also discussed, highlighting the tools and
libraries provided by fos to ease their construction.

Services in fos are implemented by cooperating, spatially-distributed sets of processes.
This idea is the cornerstone of fos. Whereas prior projects have demonstrated the viability of
microkernels, fos aims to implement a complete distributed, parallel OS by implementing service
fleets. The core design principles of fleets are:

• Scalability. Fleets are designed with scalability as the primary design constraint.
Fleets employ best practices for scalability such as lockless design and data
partitioning, as well as the best available data structures and algorithms.

• Self-awareness. Fleets monitor and adapt their behavior to the executing environment.
Load between members is rebalanced, and members are migrated to improve
communication latency.

• Elasticity. Fleets are elastic, and can expand and shrink to match changing demand.
Performance is monitored such that the optimal number of servers is used to
implement each OS service.

Figure 2: fos high-level architecture

Approved for Public Release; Distribution Unlimited.
 6

• Fault Tolerance. Fleets are naturally tolerant to faults, as they do not share memory
and therefore have a much higher degree of isolation than conventional OSes.

Each system service is implemented by a single fleet of servers. Within a single system,
there will be a file system fleet, a page allocator fleet, a naming fleet, a process management
fleet, etc. Additionally, the fleet may span multiple machines where advantageous. For example,
in order to provide local caching for fast access, it is good practice to have a member of the file
system fleet on every machine. The same general principle applies to many OS services, and for
some critical services (e.g. naming) it is required to have an instance on each machine.

Fleets must support a variety of management tasks. Fleets can grow and shrink to meet
demand, and must support rebalancing when a new member joins or leaves the fleet. Currently
many services designate a single member, termed the coordinator, to perform many of these
tasks.

3.2.1 Scalability. Fleets are designed to scale from a few to very many servers. They are not
tuned to a particular size, but designed using best practices and algorithms to scale over a large
range of sizes. This is important for multicore and cloud computing, as current trends in
increasing core counts are likely to continue for the foreseeable future. Furthermore, different
processors, even within a single processor family, will have variety of core counts. Therefore,
fleets are designed to scale to different number of cores to address these needs.

In order to facilitate the scalability of fos fleets, fleets are designed in a message-passing-
only manner such that layout of the data is explicit and shared memory and lock contention do
not become bottlenecks. Our results show that lock contention in Linux has major scalability
impact on the page allocation service, whereas fos is able to achieve excellent scalability through
lockless design.

3.2.2 Self-awareness. A natural advantage of separating OS services from applications is the
ease of performing background optimizations and re-balancing of the service. Although such
optimizations are possible in monolithic designs, giving each service its own thread provides a
natural framework in which to perform such tasks. Interference with application performance can
be minimized by performing tasks only when necessary or when the service is idle. Fleets
monitor their environment and adapt their behavior to improve performance. For example, fleet
members can migrate to minimize communication costs with cores they are serving. Similarly,
when a new transaction begins, it is assigned to the closest available fleet member. Active
transactions can be migrated to other members if a server becomes overloaded, and these
performance statistics also motivate growing or shrinking the fleet.

Fleets often must route requests themselves, independent of the name service. One
important reason is resource affinity – if a request uses a resource under management of a
particular fleet member, then the request should be forwarded to that member. A simple example
of this is local state kept by each fleet member for a transaction, for example a Transmission
control Protocol/Internet Protocol (TCP/IP) connection. In this case, routing through the name
service is insufficient because state has already been created during connection establishment,
and the connection is associated with a particular fleet member when the first message on that
connection arrives (see Section 4.1). Another example is if a request uses a hardware resource on
a different machine. In this case, the request must be forwarded to the fleet member on the
machine that has access to the hardware.

Approved for Public Release; Distribution Unlimited.
 7

3.2.3 Elasticity. In addition to unprecedented amounts of resources, clouds and multicores
introduce unprecedented variability in demand for these resources. Dynamic load balancing and
migration of processes go a long way towards solving this problem, but still require over-
provisioning of resources to meet demand. This would quickly become infeasible, as every
service in the system claims the maximum amount of resources it will ever need. Instead, fleets
are elastic, meaning they can grow to meet increases in demand, and then shrink to free resources
back to the OS.

Monolithic OSes achieve elasticity by “accident”, as OS code runs on the same core as
the application code. This design has obvious advantages, since the computational resources
devoted to the service scale proportionally with demand. There are disadvantages, however:
monolithic designs relinquish control of how many cores to provision the service. This can lead
to performance degradation if too many threads are accessing a shared resource simultaneously.
fos can avoid this by fixing the size of a fleet at the point that achieves maximal performance.
One example of “elasticity by accident” running awry occurs when a single lock is highly
contended. In this case, when more cores contend for a lock, the performance of all cores
degrades. Limiting the numbers of cores performing OS functions (contending for the resource)
can actually improve performance in such cases. Our results show examples of this phenomenon
where by limiting the number of cores dedicated to a fleet, fos can achieve higher performance
with fewer resources than Linux simply because Linux has no means to limit the number of cores
running the OS services.

Additionally, for applications that rely heavily on the OS it may be best to provision more
cores to the OS service than the application. The servers can then collaborate to provide the
service more efficiently. These design points are not provided in monolithic operating systems.

A fleet is grown by starting a new server instance on a new core. This instance joins the
fleet by contacting other members (either the coordinator or individual members via a distributed
discovery protocol) and synchronizing its state. Some of the distributed, shared state is migrated
to the new member, along with the associated transactions. Transactions are migrated in any
number of ways, for example by sending a redirect message to the client from the “old” server.
Shrinking the fleet can be accomplished in a similar manner.

3.2.4 Fault Tolerance. The fleet design has natural advantages for fault tolerance. Because
shared state is managed through a library of distributed data structures, there are natural
opportunities for replication of critical data. Memory is not shared, so a faulty core cannot
corrupt the memory of an entire service or, worse, the full system. Because each server keeps its
own local state, it is not affected by misbehavior of other fleet members for many operations.

For example, the name service fully replicates the name table on all members, and there
is no central coordinator or point of failure. This design is naturally tolerant of faults in any
member. Applications communicating to a faulty name service may get incorrect results, but the
namespace remains operational and applications can detect failure upon use of invalid names and
switch to a non-faulty name service member.

Approved for Public Release; Distribution Unlimited.
 8

4.0 RESULTS AND DISCUSSION

4.1 Summary of Accomplishments

This subsection summarizes the accomplishments achieved by this project. They are discussed in
further detail later in this section.

 The fos microkernel was developed with support for large x86 systems. fos is
implemented as a paravirtualized OS on Xen to support cloud systems. The OS has support for
large multicore systems (above 32 cores), and it has driver support for Ethernet and block
devices under Xen.

 fos’s messaging system has gone through several iterations to support performance and
transparency across different mechanisms. This involved implementing multiple messaging
transports, a proxy service for inter-machine communications, and a naming service to support
discovery of other services. The fast-path channel messaging implementation also went through
several iterations to achieve better performance.

 We designed and implemented a service programming model for fos. This includes a
lightweight cooperative threading library, a dispatch mechanism, and an RPC stub generation
tool. This model is used by all fleets.

 We designed and implemented distributed data structures to be used by system services.
A distributed pool data structure is used in the page allocator and process management service to
allocate from a pool of homogeneous object (memory pages or PIDs). The service performs
background rebalancing for performance. A distributed key-value store is used by the name
service to store the name space. This data structure is completely distributed without a central
coordinator or point of failure. It is also completely replicated for fault tolerance and read
latency.

 We implemented several key fleets, including the page allocator, name service, network
stack, file system, process manager, and cloud manager (via Eucalyptus).

 Several real-world benchmarks and workloads are supported by fos, including lighttpd
[5], memcached [6], SQLite [7], SPLASH [8], and PARSEC [9].

 fos services have been extensively evaluated in terms of raw performance as well as
scalability. This includes baseline measurements of messaging, “null system call,” and single-
core benchmarking of each service, as well as scaling studies of services as cores are added to
the system.

 A port of fos to the Tilera multicore system was in progress at the time this report was
being written.

Approved for Public Release; Distribution Unlimited.
 9

4.2 Messaging

fos provides interprocess communication through a mailbox-based message-passing abstraction.
The Application Programming Interface (API) allows processes to create mailboxes to receive
messages, and associate the mailbox with a name and capability. This design provides several
advantages for a scalable OS on multicores and in the cloud. Messaging can be implemented via
a variety of underlying mechanisms: shared memory, hardware message passing, TCP/IP, etc.
This allows fos to run on a variety of architectures and environments.

The traditional alternative to message-passing is shared memory. However, in many
cases shared memory may be unavailable or inefficient: fos is architected to support
unconventional architectures where shared memory support is either absent or inefficient, as well
as supporting future multicores with thousands of cores where global shared memory may prove
unscalable. Relying on messaging is even more important in the cloud, where machines can
potentially reside in different datacenters and intermachine shared memory is unavailable.

A more subtle advantage of message passing is the programming model. Although
perhaps less familiar to the programmer, a message-passing programming model makes data
sharing more explicit. This allows the programmer to consider carefully the data sharing patterns
and find performance bottlenecks early on. This leads to more efficient and scalable designs.
Through message passing, we achieve better encapsulation as well as scalability. It bears noting
that fos supports conventional multithreaded applications with shared memory, where hardware
supports it. This is in order to support legacy code as well as a variety of programming models.
However, OS services are implemented strictly using messages.

Having the OS provide a single message-passing abstraction allows transparent scale-out
of the system, since the system can decide where best to place processes without concern for
straddling shared memory domains as occurs in cloud systems. Also, the flat communication
medium allows the OS to perform targeted optimizations across all active processes, such as
placing heavily communicating processes near each other.

fos currently provides three different mechanisms for message delivery: kernelspace,
userspace, and intermachine. These mechanisms are transparently multiplexed in the libfos
library layer, based on the locations of the processes and communication patterns:

• Kernelspace: The fos microkernel provides a simple implementation of the mailbox
API over shared memory. This is the default mechanism for delivering messages
within a single machine. Mailboxes are created within the address space of the
creating process. Messages are sent by trapping into the microkernel, which checks
the capability and delivers the message to the mailbox by copying the message data
across address spaces into the receiving process. Messages are received without
trapping into the microkernel by polling the mailbox’s memory. The receiver is not
required to copy the message a second time because the microkernel is trusted to not
modify a message once it is delivered.

• Userspace: For processes that communicate often, fos also provides shared memory
channel-based messaging inspired by URPC [10] and Barrelfish [11]. The primary
advantage of this mechanism is that it avoids system call overhead by running
entirely in user space. Channels are created and destroyed dynamically, allowing
compatibility with fos’s mailbox messaging model. Outgoing channels are bound to
names and stored in a user-level name cache. When a channel is established, the
microkernel maps a shared page between the sender and receiver. This page is treated

Approved for Public Release; Distribution Unlimited.
 10

as a circular queue of messages. Data must be copied twice, once by the sender when
the message is enqueued in the buffer and once by the receiver when the message is
dequeued from the buffer. The second copy is needed for security and to ensure the
queue slot is available for future messages as soon as possible. This mechanism
achieves much better per-message latency, at the cost of an initial overhead to
establish a connection.

• Intermachine: Messages sent between machines go through a proxy server. This
server is responsible for routing the message to the correct machine within the fos
system, encapsulating messages in TCP/IP, as well as maintaining the appropriate
connections and state with other proxy servers in the system.

4.3 Programming Model

fos provides libraries and tools to ease the construction of fleets and parallel applications.
These are designed to mitigate the complexity and unfamiliarity of the message-passing
programming paradigm, thus allowing efficient servers to be written with simple, straight-line
code. These tools are (i) a cooperative threading model integrated with fos’s messaging system,
(ii) a remote procedure call (RPC) code generation tool, and (iii) a library of distributed objects
to manage shared state.

The cooperative threading model and RPC generation tool are similar to tools commonly
found in other OSes. The cooperative threading model lets several active contexts multiplex
within a single process. The most significant feature of the threading model is how it is
integrated with fos’s messaging system. The threading model provides a dispatcher, which
implements a callback mechanism based on message types. When a message of a particular type
arrives, a new thread is spawned to handle that message. Threads can send messages via the
dispatcher, which sleeps the thread until a response arrives. The use of a cooperative threading
model allows the fleet server writer to write straight-line code for a single transaction and not
have to worry about preemptive modification of data structures thereby reducing the need for
locks. The RPC code generator provides the illusion of local function calls for services
implemented in other processes. It parses regular C header files and generates server and client-
side libraries that marshal parameters between servers. The tool parses standard C, with some
custom annotations via gccxml indicating the semantics of each parameter. Additionally, custom
serialization and deserialization routines can be supplied to handle arbitrary data structures. The
RPC tool is designed on top of the dispatcher, so that servers implicitly sleep on a RPC call to
another process until it returns.

The libraries generated by the RPC tool provide more general support for constructing
fleets. For example, they can be used to pack and unpack messages without RPC (send, sleep,
return) semantics. This is useful in order to pipeline requests with additional processing,
broadcast a message to fleet members, and support unusual communication patterns that arise in
constructing fundamental OS services.

One challenge to implementing OS services as fleets is the management of shared state.
This is the major issue that breaks the illusion of straight-line code from the RPC tool. fos
addresses this by providing a library of distributed data structures that provide the illusion of
local data access for distributed, shared state. The goal of this library is to provide an easy way to
distribute state while maintaining performance and consistency guarantees. Data structures are
provided matching common usage patterns seen in the implementation of fos services. The name
service provides a distributed key-value store, implemented via a two-phase commit protocol

Approved for Public Release; Distribution Unlimited.
 11

with full replication. The library provides another key-value store implementation that distributes
the state among participants. These implementations have different cost models, and usage
dictates when each is appropriate. Similarly, the page allocator uses a distributed buddy
allocator; this data structure could be leveraged to provide process IDs, file pointers, etc. These
data structures are kept consistent using background updates. This is achieved using the
cooperative dispatcher discussed above. The distributed data structure registers a new mailbox
with the dispatcher and its own callbacks and message types.

Future research directions will explore the set of data structures that should be included in
this library, and common paradigms that should be captured to enable custom data structures.

4.4 Cloud Computing

We realized that many of the features of fos that were designed for large-scale multicore systems
were also useful in a cloud environment. Because of fos' distributed nature, scalability, and fault
tolerance it can easily be extended to work across multiple machines in addition to multiple
cores. Therefore, we have expanded our strategic vision of fos from an operating system for
multicore chips to a unified operating system for large numbers of cores either within a single
machine or spread across many machines. We do not expect this to significantly change the
design we have already created; however, future research will include developing additional
features for cloud support.

fos has been expanded to support dynamic joining of new instances to a running instance.
Fos initially required all machines to be pre-allocated and initialized simultaneously. We
expanded the multi-machine support to allow dynamic joining of new instances. This allows new
machines to be added for increased capacity/performance or to take over from failed machines.
This new functionality requires merging state of services on the new instances so they have a
consistent view of the instance. For example, when a new machine joins the instance, the name
service performs a distributed lock that blocks further modification to the name space. Then the
name table is duplicated on the new instance, the lock is released, and normal operation resumes
with the new machine fully joined in the namespace.

4.5 Xen Paravirtualization

We have decided to implement our initial prototype version of fos as a paravirtualized OS
for Xen instead of a bare-metal OS that runs directly on hardware. Essentially, this means that
we will be using an off-the-shelf hypervisor layer (Xen) rather than creating our own. All of the
fos-specific low-level functionality will be moved to the microkernel layer than sits on top of the
hypervisor.

This approach has several benefits. First, it allows us to get a working system up and
running more quickly because we have less to implement ourselves. Second, it allows us to
leverage existing Linux device drivers to quickly run on a broader range of hardware. Xen
provides several types of virtual devices with simplified interfaces and uses Linux devices
drivers running in a separate virtual machine to bridge between the virtual devices and real
hardware. Therefore, we only need to write a single device driver for each type of device (e.g.,
network interface, video, disk controller, etc.) and we will be able to run on any of those devices
that Linux supports. Third, it allows us to run experiments on commercially-available cloud
infrastructures. In particular, Amazon's EC2 uses Xen for virtualization and requires that any
custom virtual machines use paravirtualization.

Approved for Public Release; Distribution Unlimited.
 12

It is important to note that the decision to use Xen paravirtualization does not limit the
long-term portability of fos. To implement a bare-metal version or port to another architecture,
we will simply need to implement our own hypervisor layer and device drivers to replace Xen.
This is work we would have needed to do anyway, we have simply delayed the point at which it
is required and allowed ourselves to get to the more interesting aspects of fos earlier.

4.6 Application Support

fos supports a number of important cloud and multicore workloads. It implements the
commonly-used APIs in POSIX threads, POSIX sockets, libc, etc. through a compatibility layer
above libfos. The multi-threading work involved evaluating our pthreads library along with its
kernel extensions and porting several pthreads applications to fos, such as parallel pthread
versions of Jacobi relaxation, matrix-matrix multiply, 2D and 3D molecular dynamics codes as
well as several mutex stress codes and threading bombs. We have done several scalability
evaluations for our threaded library implementation using these multithreaded codes, which has
guided our optimization efforts for our library implementation. The results of our optimization
efforts for fos pthread library has achieved similar scalability and performance numbers for most
pthread operations (except for thread creation and joining) as the Linux 2.6 pthreads library
implementation.

Figure 3 shows that fos achieves competitive performance on memcached for small
workloads. This benchmark measures the latency of memcached requests through fos and Linux
over 100 requests. It exercises the full network stack and POSIX compatibility layer. It is
ongoing work to scale our network stack and application support to larger memcached
workloads.

 Figure 3: Single-stream memcached latency

Approved for Public Release; Distribution Unlimited.
 13

4.7 Services

4.7.1 Naming. Closely coupled with messaging, fos provides a name service to lookup
mailboxes throughout the system. Each name is a hierarchical URI much like a web address or
filename. The namespace is populated by processes registering their mailboxes with the name
service. The key advantage of the name service is the level of indirection between the symbolic
identifier of a mailbox and its so-called “address” or actual location (machine, memory address,
etc.). By dealing with names instead of addresses, the system can dynamically load balance as
well as re-route messages to facilitate and processes migration.

The need for dynamic load balancing and process migration is a direct consequence of
the massive scale of current cloud systems and future multicores. In addition to a greater amount
of resources under management, there is also greater variability of demand. Static scheduling is
inadequate, as even if demand is known it is rarely constant. It is, therefore, necessary to adapt
the layout of processes in the system to respond to where the service is currently needed.

The advantage of naming is closely tied to fleets. Fleet members will each have an in-
bound mailbox upon which they receive requests, and these mailboxes will all be registered
under a single name. It is the responsibility of the name service to resolve a request to one
member of a fleet. Load balancing can be quite complicated and highly customized to a specific
service. Each service can dynamically update the name system to control the load balancing
policy for their fleet. The name service does not determine load balancing policy, but merely
provides mechanisms to implement a policy. To support stateful operations, applications or
libfos can cache the name lookups so that all messages for a transaction go the same fleet
member.

Alternatively, the fleet can manage shared state so that all members can handle any
request. In fos, another design point is to explicitly load balance within the fleet. This approach
may be suitable when the routing decision is based on state information not available to the name
service. In either approach it is important to realize that by decoupling the lookup of mailboxes
using a symbolic name, the OS has the freedom to implement a given service through a dynamic
number of servers. For example, the name lookup of /foo/bar results in the symbolic name
/foo/bar/3, which is the third member of the fleet. This is the name that is cached, and subsequent
requests forward to this name, wherever it should be.

The name service also enables migration of processes and their mailboxes. This is
desirable for a number of reasons, chiefly to improve performance by moving communicating
servers closer to each other. Migration is also useful to rebalance load as resources are freed. The
name service provides the essential level of indirection that lets mailboxes move freely without
interrupting communication.

Figure 4 shows the scaling of the name service fleet with a read-dominated workload.
Name service fleets of appropriate size scale ideally, with minimal performance degradation
under high load. This workload exercises the critical operation of the name service – lookups to
other OS services, where the name service is on the critical path.

Approved for Public Release; Distribution Unlimited.
 14

Figure 4: Scaling of the Name Service Fleet

4.7.2 Page Allocation. We have implemented a new parallel version of the Physical Memory
Allocation (PMA) service using the dPool data structure and used it to evaluate the performance
of the different dPool implementations. The PMA maintains a pool of available memory pages
and responds to requests for more memory from running processes. Of course, it is also possible
for processes to release pages back to the PMA when they no longer need them. The dPool data
structure is used to maintain the list of available of pages. Processes can request new pages from
any of the servers within the PMA fleet but will typically use the server closest to themselves
(based on communication latency). This will minimize communication time and spread the total
system load across the different servers. Although we have not yet implemented this, it should
also be possible to redirect processes from one server to another if the load is highly imbalanced
and a particular server becomes a bottleneck.

Figure 5 shows performance results for the PMA when using the Background Push with
Estimation version of the dPool. This was the best performing dPool implementation for this
service. The different lines show the achieved response rate of the PMA service for different
fleet sizes (similar data from a stock Linux installation on the same hardware is also included for
reference). In this experiment, the fleet size did not change dynamically but was fixed while the
number of requesting clients was varied. The total memory request rate increases in proportion
to the number of clients. In all cases, the PMA fleet's response rate scales nicely as the load
increases, up to some saturation point. This shows the maximum load that a particular fleet size
can support. This maximum also scales linearly as the number of servers in the fleet increases.
From this we conclude that the dPool data structure is able to manage the shared state for the
PMA service without introducing any scaling bottlenecks.

Approved for Public Release; Distribution Unlimited.
 15

Figure 5: Scalability of Physical Memory Allocation Service

Figure 6 shows a direct comparison of fos’ page allocation service to Linux’s kernel

allocator versus the number of cores in the system. This accurate represents the overhead of
fleets, and shows that despite dedicating cores exclusively to the OS, fos still significantly
outperforms Linux’s page allocator.

Figure 6: Comparison of Linux and fos page allocation

Approved for Public Release; Distribution Unlimited.
 16

4.7.3 Network Stack. fos has a fully-featured networking service responsible for packing and
unpacking data for the various layers of the network stack as well as updating state information
and tables associated with the various protocols (e.g., Dynamic Host Configuration Protocol
(DHCP), Address Resolution Protocol (ARP), and Domain Name System (DNS)). The stack was
implemented by extending lwIP with fos primitives for parallelization to create the network stack
fleet. The logical view of this service is depicted in Figure 7. In this diagram the dashed lines
represent the paths that a given TCP/IP flow may take while traversing the network stack. In this
diagram we can see that the flows are multiplexed between the different network stack fleet
members. The distribution of these flows amongst the fleet members is managed by the fleet
coordinator.

The design employs a fleet of network stack servers with a single member designated as
the coordinator. The fleet coordinator is responsible for several management tasks as well as
handling several of the protocols.

When the kernel receives data from the network interface it delivers it to the network
interface server. The network interface server then peeks into the packet and delivers it to one of
the fleet members depending on the protocol the packet corresponds to. The handling of many
stateless protocols (User Datagram Protocol (UDP), Internet Control Message Protocol (ICMP))
is fairly straightforward, as they can be passed to any member. Likewise, low-frequency stateful
requests (DNS, DHCP, ARP) can be handled by a single fleet member, broadcasting information
required to all fleet members. Therefore, the remainder of this section discusses TCP, which is
the dominant workload of the network stack and exposes the most challenging problems.

Since TCP flows are stateful they must be handled specially, demonstrating how fleet
members can coordinate to handle a given OS service. When an application wishes to listen on a
port it sends a message to the coordinator which adds state information associated with that
application and port. Once a connection has been established, the coordinator passes
responsibility for this flow to a fleet member. The coordinator also sets up a forwarding

Figure 7: fos Network Stack Design

Approved for Public Release; Distribution Unlimited.
 17

notification such that other packets destined for this flow already in the coordinator’s queue get
sent to the fleet member who is assigned this flow.

While this approach potentially re-orders packets, as the forwarded packets can be
interleaved with new input packets, TCP properly handles any re-ordering. Once the fleet
member has accepted the stream, it notifies the network interface to forward flows based on a
hash of the (source IP, source port, destination IP, destination port). Once this flow forwarding
information has been updated in the network interface server, packets of this type are delivered
directly to the fleet member and then the application. Note that these mechanisms occur behind
libfos and are abstracted from the application behind convenient interfaces.

Figure 8 repeats the previous experiment with the network stack and shows again that the
fleet service model comes out ahead against Linux, even when accounting for OS cores.

4.7.4 File System and Block Device. We have implemented a device driver server which
interfaces with Xen's generalized block device and provides the low-level access to storage. We
have also created a filesystem server which creates an ext2 filesystem on a block device by
communicating with the block device server. File systems are not a primary research target for
fos, so our filesystem is very much a placeholder. It is parallel and distributed for read-only
workloads, but only supports a single server for write workloads.

4.7.5 Process Management. Using the generic dPool data structure that we developed, we
have implemented a new parallel system service, the Process Management Service (PMS). The
PMS is in charge of coordinating startup and shutdown of processes, including the tasks of
allocating memory and computational resources, assigning process identification numbers
(PIDs), loading program code and data, and de-allocating resources on shutdown. To
accomplish these tasks, it primarily communicates with other system services including the name
server, physical memory allocator, and filesystem. However, it manages PIDs internally and
uses a dPool to store them. Previously dPool was only used by the physical page allocator; this
quarter, a different programmer used it to get parallel version of the PMS working quickly and
easily. This demonstrates that the dPool interface is both general and easy to use, as designed.
We believe that it will also be useful in other system services and even user applications.

Figure 8: Comparison of Linux and fos network scaling

Approved for Public Release; Distribution Unlimited.
 18

The process management server handles a variety of tasks including process creation,
migration and termination in addition to maintaining statistics about process execution. Process
migration is one technique we are currently developing to address fault-resilience and fault-
tolerance in fos. This technique will allow us to move system servers and application processes
between cores within the same machine and between machines within the cloud when a
hardware fault is detected. This technique will, in turn, improve the overall robustness of the
system.

4.7.6 Cloud Management. We have a cloud manager interface server that can communicate
with cloud infrastructures like Eucalyptus and Amazon’s EC2 to request additional VMs. This
leverages the network stack to communicate with the outside cloud management infrastructure.

4.8 Distributed Data Structures

4.8.1 dPool. We designed and implemented a scalable, distributed data structure called a
dPool that is used to implement parallel system services. Parallel system services are provided
by collections of cooperating server processes (referred to as fleets) whose members are
distributed throughout a system. One of the major challenges of creating fos system service
fleets is sharing state between the different fleet server processes. Because all of the processes in
a fos fleet only communicate via message passing, the fleet programmer in order to effectively
share state needs to partition the data and devise a manner to use messages to keep the state
consistent across server processes. One way to address the challenge is to factor out the shared
state into a distributed data structure which manages all of the communication to keep the state
consistent. A distributed data structure created in such manner can then be used by different
fleets in order to leverage the work of creating such a library.

The dPool data structure is designed to manage the data for a particular type of shared
state: an unordered collection of elements. The shared state is encapsulated within the dPool
data structure and the fos system programmer is simply presented with function calls to add and
remove elements from the dPool. The programmer cannot request a particular element but just
requests some element and the dPool can decide which element to return. The dPool data
structure internally decides where to store the elements as well as sending and receiving
messages to keep the shared collection of elements synchronized. This data structure is useful in
situations where there is a single pool of essentially equivalent resources that need to be shared
by multiple processes such as physical memory pages or process ID numbers. To facilitate its
use by multiple different fos service fleets, a dPool provides a generic interface that can store any
type of objects.

There are many options to consider when implementing a dPool data structure. The key
issues to consider when implementing a dPool data structure are data placement and data
rebalancing. The simplest choice is to store all the elements in a single location and send all
requests for elements to this location. Obviously, this solution will not scale under heavy load.
We have instead implemented distributed storage where the elements are partitioned and each
piece is stored in a different fleet member. This scheme increases the available request rate and
can be scaled by distributing the elements to more servers as demand increases. However, it
introduces the problem of rebalancing when some servers may deplete their allocation of
elements more quickly than others. Rebalancing can take place only when the supply of
elements in a server is exhausted, but doing so introduces additional latency. fos makes use of
spatial multiplexing of services to do re-balancing in the background. We have also implemented

Approved for Public Release; Distribution Unlimited.
 19

four different schemes for rebalancing the elements among shards: bulk transfer, background
pull, background push, and background push with estimation.

The normal Distributed Storage implementation requests an element from other shards
only when it completely runs out of its own elements. The Bulk Transfer implementation
behaves similarly but prefetches a block of elements when it needs to make a request. The
Background Pull implementation contains a second thread in each server that occasionally wakes
up and checks to see if the supply of elements in that shard is starting to run low. If the number
of elements is below some threshold, it pulls blocks of elements from other shards in the
background. The Background Push implementation also uses a background thread but takes the
opposite approach and pushes elements to other shards when it notices that the local shard has a
surplus of elements. However, this version pushes indiscriminately to other shards whether they
need extra elements for not. The Background Push with Estimation implementation improves on
this by maintaining an estimate of the number of elements in the other shards which is lazily
updated to reduce communication traffic. Using this estimate, a particular server will only push
elements to other shards that it estimates to have fewer elements than it does. This greatly
reduces the possibility of two servers repeatedly pushing the same elements back and forth to
each other.

4.8.2 Key-Value Store. The name service uses a fully distributed key-value (KV) store. It is
completely replicated for read performance and fault tolerance. Consensus on updates to the key-
value store is reached by a simple two-phase commit protocol.
 This data structure has been implemented generically and can be used in other services as
well. In the current implementation, however, most services choose to use the name service to
store shared state rather than incorporate the KV store internally. That is, the name service
works to redirect requests to the server that owns the object. This minimizes the need for
replication of larger OS objects and improves performance.
 We have begun initial exploratory work into other KV stores that will provide better
write latency, limit replication to fewer nodes, and improve scalability. There are two main paths
for this work: a cache-coherent, strongly-consistent variation, or an eventually consistent
variation. Each are viable options under consideration, with the main trade-off coming in the
semantics presented the programmer and additional performance cost for strong consistency.

4.9 Tilera Port

We have also begun work on a port of fos to run on Tilera hardware. This primarily involves
porting machine-specific code within the microkernel. Most services other than the process
management service, which manages hardware-specific structures like page tables, are machine
independent, including the name service and messaging system. Once the microkernel work is
complete, this should quickly translate to a complete port the full system. However, this work
will not be completed within the timeframe of the award.

5.0 CONCLUSIONS

Current operating system designs will not be able to cope with the future of multicore systems.
The differences between managing a couple and several thousand cores in these systems is so
drastic that the entire design of operating systems must be rethought.

Approved for Public Release; Distribution Unlimited.
 20

 fos is designed deal with this problem by factoring OS services into userspace processes
which run on separate cores from applications. Doing so has several scalability and performance
advantages: primarily increased parallelism and decreased cache pollution between applications
and system services. Other advantages include fault tolerance, self-awareness, and elastically
scaling services in response to changing demand.
 A working prototype of fos has been implemented as a paravirtualized OS under the Xen
hypervisor. The prototype features a messaging layer on which several system services have
been implemented. Implemented services include: naming, page allocation, file system, network
stack, and process management. fos has also been extended to support dynamically adding new
machines to a running fos image. This allows the capacity of the system to be increased at
runtime.

Approved for Public Release; Distribution Unlimited.
 21

6.0 REFERENCES

1. Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel
Webb Williams, and Katherine A. Yelick, “The Landscape of Parallel Computing
Research: A View from Berkeley,” University of California, Berkeley, Technical Report
No. UCB/EECS-2006-183, December 18, 2006.

2. Borkar, S., "Thousand Core Chips - A Technology Perspective," Design Automation
Conference, 2007. DAC '07. 44th ACM/IEEE , pp.746-749, June 2007

3. Borkar, S., "Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation," Micro, IEEE , vol.25, no.6, pp. 10-16, Nov-Dec
2005

4. Mukherjee, S.S.; Emer, J.; Reinhardt, S.K., "The soft error problem: an architectural
perspective," High-Performance Computer Architecture, 2005. HPCA-11. 11th
International Symposium on , pp. 243-247, Feb 2005

5. J. Kneschke. Lighttpd. http://www.lighttpd.net/
6. B. Fitzpatrick. Memcached. http://memcached.org/
7. SQLite, http://www.sqlite.org/
8. SPLASH. http://www.capsl.udel.edu/splash/
9. C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC Benchmark Suite:

Characterization and Architectural Implications. In PACT, 2008.

10. B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. User-level interprocess
communication for shared memory multiprocessors. ACM Transactions on Computer
Systems, 9(2):175 – 198, May 1991

11. A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A.
Schüpbach, and A. Singhania. The multikernel: a new OS architecture for scalable
multicore systems. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 29–44, 2009.

Approved for Public Release; Distribution Unlimited.
 22

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

2D: two dimensional
3D: three dimensional
ACM: Association for Computing Machinery
API: application programming interface
ARP: Address Resolution Protocol
C: A programming language.
CMOS: complementary metal-oxide-semiconductor
DNS: Domain Name System
DHCP: Dynamic Host Configuration Protocol
EC2: Elastic Compute Cloud
ICMP: Internet Control Message Protocol
IEEE: Institute of Electrical and Electronics Engineers
IP: Internet Protocol
ISA: instruction set architecture
KV: key-value
lwIP: A light-weight open-source IP stack implementation.
OS: operating system
PID: process identification number
PMA: physical memory allocation
PMS: process management service
POSIX: Portable Operating System Interface
RPC: remote procedure call
SMP: symmetric multi-processor
TCP: Transmission Control Protocol
UDP: User Datagram Protocol
URI: uniform resource identifier
URPC: user-level remote procedure call
VM: virtual machine

	List of Figures
	1.0 Summary
	2.0 Introduction
	3.0 Methods, Assumptions, and Procedures (System Design)
	3.1 Microkernel
	3.2 Fleets
	3.2.1 Scalability.
	3.2.2 Self-awareness.
	3.2.3 Elasticity.
	3.2.4 Fault Tolerance.

	4.0 Results and Discussion
	4.1 Summary of Accomplishments
	4.2 Messaging
	4.3 Programming Model
	4.4 Cloud Computing
	4.5 Xen Paravirtualization
	4.6 Application Support
	4.7 Services
	4.7.1 Naming.
	4.7.2 Page Allocation.
	4.7.3 Network Stack.
	4.7.4 File System and Block Device.
	4.7.5 Process Management.
	4.7.6 Cloud Management.

	4.8 Distributed Data Structures
	4.8.1 dPool.
	4.8.2 Key-Value Store.

	4.9 Tilera Port

	5.0 Conclusions
	6.0 References
	List of Symbols, Abbreviations and Acronyms

